Monatshefte für Chemie 101, 984—996 (1970) © by Springer-Verlag 1970

Quecksilber—Halogensysteme, 2. Mitt.:

Das System Quecksilber-Jod

Von

Rosemarie Dworsky und Kurt L. Komarek

Aus dem Institut für Anorganische Chemie der Universität Wien

Mit 3 Abbildungen

(Eingegangen am 13. April 1970)

Das System Hg-J₂ wurde thermoanalytisch und visuell untersucht. Im System J₂-HgJ₂ bildet J₂ mit HgJ₂ ein Eutektikum bei 14,5 Mol% HgJ2 und 101,3°C. Rotes HgJ2 wandelt sich bei 131,2° C in gelbes HgJ2 um, welches bei 256,7° C schmilzt. Im System HgJ2-Hg liegt zwischen HgJ2 und Hg₂J₂ ein Eutektikum bei 82,7 Mol% HgJ₂ und 231,4° C. Bei erstmaligem Aufheizen schmilzt Hg₂J₂ bei 296° C. Unter Gleichgewichtsbedingungen bildet sich Hg₂J₂ syntektisch bei 241,5° C aus einer HgJ2-reichen Schmelze mit 79 Mol% HgJ2 und einer Hg-reichen Schmelze mit < 0.5 Mol% HgJ₂. Zwischen diesen beiden Zusammensetzungen erstreckt sich eine Mischungslücke im flüssigen Zustand. Die kritische Temperatur liegt bei 288°C, doch ist die kritische Entmischungskurve zwischen 20 und 60 Mol% HgJ₂ praktisch horizontal. Oberhalb dieser Temperatur herrscht im System J₂-Hg vollkommene Mischbarkeit.

Diese Resultate konnten visuell bestätigt werden. Gleichzeitig wurden bei Temperaturänderung charakteristische reversible Farbänderungen beobachtet. Berechnungen der Liquiduskurve ergaben, daß Schmelzen im System J_2 —Hg J_2 nahezu ideale Lösungen der Molekülarten J_2 und Hg J_2 darstellen. Bei Zusatz von Hg zu Hg J_2 -Schmelzen bilden sich entweder Hg-Atome oder Hg $_2J_2$ -Moleküle. Abschließend werden die Systeme Hg X_2 —Hg thermodynamisch diskutiert und mit anderen Metallhalogenid—Metallsystemen verglichen.

Mercury—Halogen Systems. II. The Mercury—Iodine System

The Hg–J₂ system was investigated by thermal analysis and visual observation. In the J₂—HgJ₂ system J₂ forms a eutectic with HgJ₂ at 14.5 mole% HgJ₂ and 101.3° C. Red HgJ₂ transforms at 131.2° C into yellow HgJ₂ which melts at 256.7° C. In the HgJ₂—Hg system a eutectic between HgJ₂ and Hg₂J₂ is observed at 82.7 mole% HgJ₂ and 231.4° C. When heated for the first time Hg₂J₂ melts at 296° C. Under equilibrium conditions Hg_2J_2 is formed by a syntectic reaction at 241.5° C from an HgJ_2 -rich melt with 79 mole% HgJ_2 and an Hg-rich melt with < 0.5 mole% HgJ_2 . A miscibility gap in the liquid state exists between both compositions. The critical temperature is 288° C but the critical immiscibility curve between 20 and 60 mole% HgJ_2 is practically horizontal. Above this temperature the J_2 —Hg system is completely miscible. These results could be visually confirmed. Also characteristic reversible color changes with temperature could be observed. From calculations of the liquidus curves it was concluded that the melts in the J_2 —HgJ₂ system are nearly ideal solutions of the molecular species J_2 and HgJ₂. Hg dissolves in liquid HgJ₂ either as Hg atoms or as Hg₂J₂ molecules. The HgX₂—Hg systems are discussed thermodynamically and compared with other metal halogenide—metal systems.

In einer vorausgegangenen Arbeit¹ wurde über die Ergebnisse von Untersuchungen im bisher unbekannten System Hg—Br₂ berichtet. Bisher vorliegende Resultate über das System Hg—J₂ sind ebenfalls sehr lückenhaft, so daß eine Untersuchung dieses Systems für notwendig erachtet wurde.

Das Lösungsverhalten von HgJ_2 in J_2 wurde von $Beckmann^2$ und von Jander und Bandlow³, das Lösungsverhalten von Hg_2J_2 in HgJ_2 von Beckmann⁴ untersucht. Über das Teilsystem HgJ_2 — Hg_2J_2 liegt eine Arbeit von Pelabon und Laude⁵ vor. Bei der Auswertung von Leitfähigkeitsmessungen erhielt Grantham⁶ vier Punkte, aus denen er eine Liquiduskurve im Bereich HgJ_2 — Hg_2J_2 konstruierte.

Im Rahmen der vorliegenden Arbeit wurde das System $Hg-J_2$ mittels thermischer Analyse und visueller Beobachtung aufgeklärt. Röntgenographische Untersuchungen in diesem System und in den quasibinären Systemen $Hg_2Br_2-Hg_2J_2$ und $Hg_2Cl_2-Hg_2J_2$ sind zum Teil noch im Gange. Darüber wird in einer späteren Veröffentlichung noch berichtet werden.

Experimenteller Teil

Die verwendeten Substanzen waren von E. Merck AG, Darmstadt, und hatten folgende Zusammensetzung.

Hg (mehrfach destilliert):

< 0,00005% Pb, < 0,00005% Cu,

 $< 0,00002 \,\%$ Ni, $< 0,0001 \,\%$ Fe,

- ³ G. Jander und K. H. Bandlow, Z. physik. Chem. 191, 321 (1924).
- ⁴ E. Beckmann, Z. anorg. Chem. 89, 167 (1914).
- ⁵ H. Pelabon und R. Laude, Bull. Soc. Chim. France 45, 488 (1929).
- ⁶ L. F. Grantham, J. Chem. Physics 49, 3835 (1968).

¹ R. Dworsky und K. L. Komarek, Mh. Chem. 101, 976 (1970).

² E. Beckmann, Z. anorg. Chem. 77, 200 (1912).

< 0,00002% Mn, < 0,00001% Cd,

- < 0,00005% Zn, < 0,00001% Tl,
- < 0,0001% nichtflüchtige Anteile.
- Jod (doppelt sublimiert): < 0.01% nichtflüchtige Anteile, < 0.005% Cl und Br (als Cl).
- $\mathrm{Hg}_{2}\mathrm{J}_{2}$: > 99,0% $\mathrm{Hg}_{2}\mathrm{J}_{2}$, < 2,0% Trocknungsverlust, < 0,15% lösliche Hg-Salze und fremde Schwermetalle (als Hg), < 0.1% Glührückstand.
- HgJ₂: 99,5% HgJ₂, <0,2% in KJ unlösliche Anteile, <0,02% Cl⁻, < 0.02% lösliche Hg-Salze und fremde Schwermetalle (als Pb), < 0.5% Trocknungsverlust, < 0.1% Glührückstand, Löslichkeit in Äthanol und NO3⁻ d. Pharmakopöen entsprechend.

Die Proben wurden entweder direkt aus den Elementen oder aus den Elementen und den entsprechenden Salzen hergestellt. Die aus den Elementen eingewogenen Proben mußten wegen der knapp über dem Schmelzpunkt des J₂ eintretenden heftigen exothermen Reaktion sehr sorgfältig erhitzt werden. Im übrigen erfolgte die Zubereitung der Proben und die Durchführung der Messungen gemäß den früher mitgeteilten Angaben¹.

Resultate

Im System Hg-J₂ erstreckt sich die Mischbarkeit im flüssigen Zustand von J₂ bis Hg. Um die Resultate in einer mit den Systemen Hg-Cl₂⁷ und Hg-Br₂¹ vergleichbaren Weise darzustellen, wird zuerst das System J₂—HgJ₂ und dann das System HgJ₂—Hg besprochen.

 J_2 —HgJ₂

Wie Abb. 1 zeigt, handelt es sich hier um ein einfaches eutektisches System zwischen J₂ und HgJ₂. Die arithmetischen Mittelwerte der Haltepunkte mit den Standardabweichungen sind in Tab. 1 gegeben. Schmelzen zwischen dem Eutektikum und HgJ₂ neigten besonders stark zu Unterkühlungen der Liquidus-haltepunkte, die sich meist zwischen 2 und 5° C bewegten, jedoch bis zu 15° C erreichen konnten. In vielen Fällen konnten extreme Unterkühlungen durch gutes Schütteln der Probe vor der Messung beseitigt werden. Traten Unterkühlungen auf, so wurden nur die Maximalwerte berücksichtigt. Werte, die sehr stark von den Mittelwerten abwichen, wurden verworfen. Trotzdem waren bis zu sechzehn Messungen erforderlich, um für eine Zusammensetzung einen verläßlichen Mittelwert zu erhalten.

Das Eutektikum liegt bei 14,5 Mol% HgJ₂ und $101,3 \pm 0,1^{\circ}$ C (Mittelwert aus 27 Messungen). Reines HgJ₂ schmilzt bei 256,7 \pm 0,1° C. In der Literatur finden sich eine große Zahl von Schmelzpunkttemperaturen⁸, doch wird in einschlägigen thermodynamischen Kompilationen

⁷ S. J. Yosim und S. W. Mayer, J. Physic. Chem. 64, 909 (1960).

⁸ Gmelins Handbuch d. Anorg. Chem., 8. Aufl., Nr. 34, Teil B, Lief. 2 (1967).

dem von Bergmann⁹ bestimmten Wert von 257° C der Vorzug gegeben. Vor kurzem untersuchte Gäumann¹⁰ den Schmelzpunkt von HgJ₂ in Abhängigkeit vom Reinheitsgrad. Durch mehrmaliges Umkristallisieren aus Aceton und mehrmaliges Sublimieren erhielt er ein Produkt mit dem

Abb. 1. System Jod—HgJ₂

Schmelzpunkt 253,0° C, doch dürfte dieser Wert zu niedrig liegen. Die Phasenumwandlung des HgJ_2 von der roten tetraedrischen in die gelbe rhombische Modifikation wurde bei $131,2 \pm 0,2°$ C (Mittelwert aus 15 Messungen) gefunden, in sehr guter Übereinstimmung mit neueren Resultaten¹⁰, die mit steigendem Reinheitsgrad sich obigem Wert nähern. *Debye*—Scherrer-Aufnahmen von Proben der Zusammensetzung zwischen J_2 und HgJ_2 zeigten weder Linien einer anderen Verbindung noch eine Änderung der Gitterkonstanten gegenüber den Reinsubstanzen.

Genauso wie in den Systemen $HgCl_2$ -Hg⁷ und $HgBr_2$ -Hg¹ treten im System J_2 -Hg mit steigender Temperatur starke, reversible Farb-

⁹ A. G. Bergmann, Z. anorg. allgem. Chem. 157, 87 (1926).

¹⁰ A. Gäumann, Chimia [Aarau] 20, 82 (1966).

Zusammensetzung	Liquidus	Haltepunkte (°C) Umwandlungspunkt	Eutektikum					
(1101 /0 1150 2)	Liquidus							
0,0 (Jod)	113,6							
4,0	110,4 \pm 0,1		101,1 \pm 0,1					
7,4	107.2 ± 0.1		101.0 ± 0.1					
11,2	104.2 ± 0.2		101,1 \pm 0,2					
13,2	102.2 + 0.1		101,0 + 0,0					
15,0			$101,2 \pm 0,1$					
17.8	107.1 + 0.0		102.3 + 0.2					
24,2	123.8 + 0.5	·	101.7 ± 0.1					
32,0	143.1 + 0.4	131.5 ± 0.6	$101,2 \pm 0,2$					
41.0	162.5 + 0.7	130.6 + 0.6	101.2 + 0.1					
45.4	171.5 ± 0.0	132.0 + 0.1						
45.8	172.4 ± 0.8							
51.6	182.4 ± 0.5							
60.6	199.9 ± 0.5	130.8 ± 0.5						
61.0	199.4 ± 0.3							
72.0	216.3 ± 1.0							
80.8	$210,0 \pm 1,0$ 230.1 ± 0.3							
88.0	$230,1 \pm 0,3$ 240.4 ± 0.4		_					
88.6	$240, \pm \pm 0, \pm 0.4$	130.0						
01.6	$240,7 \pm 0,4$ 944.5 ± 0.3	150,0						
91,0	$244,0 \pm 0,0$ 951.2 ± 0.1		_					
90,4 100.0 (TT~T.)	$251,5 \pm 0,1$ 956.7 ± 0.1							
100,0 (HgJ ₂)	$250,7 \pm 0,1$	$131,4 \pm 0,2$						
	Tabelle 2. System HgJ_2 — Hg							
Zusammensetzung		Haltepunkte (°C)						
$(Mol\% HgJ_2)$	Liquidus	Syntektikum	Eutektikum					
97.0	253.1 ± 0.2		231.0					
89.4	$230,1 \pm 0,2$ 242.8 ± 0.2		231.7 ± 0.0					
857	236.5 ± 0.4		230.9 ± 0.1					
85.2	237.3 ± 0.4							
80.5	40101 + 001		-2312 + 01					
78.0	2391 - 09		$231,2 \pm 0,1$ 231.4 ± 0.1					
/	$239,1 \pm 0,9$ 247.3 ± 1.8		$231,2 \pm 0,1$ $231,4 \pm 0,1$ 231.9 ± 0.5					
78,0	$239,1 \pm 0,9 \\ 247,3 \pm 1,8 \\ 247,9 \pm 0,7$		$\begin{array}{r} 231.2 \pm 0.1 \\ 231.4 \pm 0.1 \\ 231.9 \pm 0.5 \\ 231.8 \pm 0.2 \end{array}$					
78,0 77,7 75.2	$239,1 \pm 0,9 \\ 247,3 \pm 1,8 \\ 247,9 \pm 0,7 \\ 261,4 \pm 0,3$	240 8 + 0 7	$\begin{array}{c} 231,2 \pm 0,1 \\ 231,4 \pm 0,1 \\ 231,9 \pm 0,5 \\ 231,8 \pm 0,2 \\ 231,6 \pm 0,2 \end{array}$					
77,7 75,2 72,3	$\begin{array}{c} 239,1 \pm 0,9 \\ 247,3 \pm 1,8 \\ 247,9 \pm 0,7 \\ 261,4 \pm 0,3 \\ 269,5 \pm 0.8 \end{array}$	$\frac{240.8 \pm 0.7}{240.7 \pm 0.3}$	$\begin{array}{c} 231,2 \pm 0,1 \\ 231,4 \pm 0,1 \\ 231,9 \pm 0,5 \\ 231,8 \pm 0,2 \\ 231,6 \pm 0,2 \\ 231,3 \pm 0,2 \end{array}$					
77,7 75,2 72,3 68,6	$\begin{array}{c} 239,1 \pm 0,9 \\ 247,3 \pm 1,8 \\ 247,9 \pm 0,7 \\ 261,4 \pm 0,3 \\ 269,5 \pm 0,8 \\ 274.4 \pm 1.2 \end{array}$	$\begin{array}{c}$	$\begin{array}{c} 231,2 \pm 0,1 \\ 231,4 \pm 0,1 \\ 231,9 \pm 0,5 \\ 231,8 \pm 0,2 \\ 231,6 \pm 0,2 \\ 231,3 \pm 0,2 \\ 231,3 \pm 0,2 \\ 231,2 \pm 0,6 \end{array}$					
77,7 75,2 72,3 68,6 62,6	$\begin{array}{c} 239,1 \pm 0,9 \\ 247,3 \pm 1,8 \\ 247,9 \pm 0,7 \\ 261,4 \pm 0,3 \\ 269,5 \pm 0,8 \\ 274,4 \pm 1,2 \\ 281,2 \pm 0,9 \end{array}$	240.8 ± 0.7 240.7 ± 0.3 241.0 ± 0.4 240.2 ± 1.8	$\begin{array}{c} 231,2 \pm 0,1 \\ 231,4 \pm 0,1 \\ 231,9 \pm 0,5 \\ 231,8 \pm 0,2 \\ 231,6 \pm 0,2 \\ 231,3 \pm 0,2 \\ 231,3 \pm 0,2 \\ 231,2 \pm 0,6 \end{array}$					
77,7 75,2 72,3 68,6 62,6 59,1	$\begin{array}{c} 239,1\pm 0,9\\ 247,3\pm 1,8\\ 247,9\pm 0,7\\ 261,4\pm 0,3\\ 269,5\pm 0,8\\ 274,4\pm 1,2\\ 281,2\pm 0,9\\ 284,0\pm 0,6\end{array}$	240.8 ± 0.7 240.7 ± 0.3 241.0 ± 0.4 240.2 ± 1.8 242.5 ± 1.1	$\begin{array}{c} 231,2 \pm 0,1 \\ 231,4 \pm 0,1 \\ 231,9 \pm 0,5 \\ 231,8 \pm 0,2 \\ 231,6 \pm 0,2 \\ 231,3 \pm 0,2 \\ 231,2 \pm 0,6 \\ \end{array}$					
77,7 75,2 72,3 68,6 62,6 59,1 56,7	$\begin{array}{c} 239,1\pm 0,9\\ 247,3\pm 1,8\\ 247,9\pm 0,7\\ 261,4\pm 0,3\\ 269,5\pm 0,8\\ 274,4\pm 1,2\\ 281,2\pm 0,9\\ 284,0\pm 0,6\\ 284,8\pm 0,2\\ \end{array}$	$\begin{array}{c}$	$\begin{array}{c} 231,2 \pm 0,1 \\ 231,4 \pm 0,1 \\ 231,9 \pm 0,5 \\ 231,8 \pm 0,2 \\ 231,6 \pm 0,2 \\ 231,3 \pm 0,2 \\ 231,2 \pm 0,6 \\ \hline \\ 231,5 \pm 0,7 \\ 231,3 \\ \end{array}$					
77,7 75,2 72,3 68,6 62,6 59,1 56,7 53,8	$\begin{array}{c} 239,1\pm 0,9\\ 247,3\pm 1,8\\ 247,9\pm 0,7\\ 261,4\pm 0,3\\ 269,5\pm 0,8\\ 274,4\pm 1,2\\ 281,2\pm 0,9\\ 284,0\pm 0,6\\ 284,8\pm 0,3\\ 283,3\pm 1,9\end{array}$	$\begin{array}{c}$	$231,2 \pm 0,1$ $231,4 \pm 0,1$ $231,9 \pm 0,5$ $231,8 \pm 0,2$ $231,6 \pm 0,2$ $231,3 \pm 0,2$ $231,2 \pm 0,6$ 					
77,7 $75,2$ $72,3$ $68,6$ $62,6$ $59,1$ $56,7$ $53,8$ $53,2$	$\begin{array}{c} 239,1\pm 0,9\\ 247,3\pm 1,8\\ 247,9\pm 0,7\\ 261,4\pm 0,3\\ 269,5\pm 0,8\\ 274,4\pm 1,2\\ 281,2\pm 0,9\\ 284,0\pm 0,6\\ 284,8\pm 0,3\\ 283,3\pm 1,9\\ 285,7\pm 1,1\end{array}$	$\begin{array}{c}$	$\begin{array}{c} 231,2 \pm 0,1 \\ 231,4 \pm 0,1 \\ 231,9 \pm 0,5 \\ 231,8 \pm 0,2 \\ 231,6 \pm 0,2 \\ 231,3 \pm 0,2 \\ 231,2 \pm 0,6 \\ \hline \\ 231,5 \pm 0,7 \\ 231,3 \pm 0,3 \\ \hline \end{array}$					
77,7 75,2 72,3 68,6 62,6 59,1 56,7 53,8 53,2 50,0 (Hgols)	$\begin{array}{c} 239,1\pm 0,9\\ 247,3\pm 1,8\\ 247,9\pm 0,7\\ 261,4\pm 0,3\\ 269,5\pm 0,8\\ 274,4\pm 1,2\\ 281,2\pm 0,9\\ 284,0\pm 0,6\\ 284,8\pm 0,3\\ 283,3\pm 1,9\\ 285,7\pm 1,1\\ 286,3\pm 0,3\\ \end{array}$	$\begin{array}{c}$	$\begin{array}{c} 231,2 \pm 0,1 \\ 231,4 \pm 0,1 \\ 231,9 \pm 0,5 \\ 231,8 \pm 0,2 \\ 231,6 \pm 0,2 \\ 231,3 \pm 0,2 \\ 231,2 \pm 0,6 \\ \hline \\ 231,5 \pm 0,7 \\ 231,3 \pm 0,3 \\ \hline \\ 231,3 \pm 0,3 \\ \hline \\ 231,8 \pm 0,2 \\ \end{array}$					
77,7 75,2 72,3 68,6 62,6 59,1 56,7 53,8 53,2 50,0 (Hg ₂ J ₂) 37,1	$\begin{array}{c} 239,1\pm 0,9\\ 247,3\pm 1,8\\ 247,9\pm 0,7\\ 261,4\pm 0,3\\ 269,5\pm 0,8\\ 274,4\pm 1,2\\ 281,2\pm 0,9\\ 284,0\pm 0,6\\ 284,8\pm 0,3\\ 283,3\pm 1,9\\ 285,7\pm 1,1\\ 286,3\pm 0,3\\ 287,6\pm 0,5\\ \end{array}$	 240,8 \pm 0,7 240,7 \pm 0,3 241,0 \pm 0,4 240,2 \pm 1,8 242,5 \pm 1,1 242,4 \pm 0,4 241,4 \pm 1,5 242,6 \pm 0,8 242,0 \pm 0,4 242,0 \pm 0,4	$\begin{array}{c} 231,2 \pm 0,1 \\ 231,4 \pm 0,1 \\ 231,9 \pm 0,5 \\ 231,8 \pm 0,2 \\ 231,6 \pm 0,2 \\ 231,3 \pm 0,2 \\ 231,2 \pm 0,6 \\ \hline \\ 231,5 \pm 0,7 \\ 231,3 \pm 0,3 \\ \hline \\ 231,3 \pm 0,3 \\ \hline \\ 231,8 \pm 0,2 \\ \hline \end{array}$					
$\begin{array}{c} 77,7\\75,2\\72,3\\68,6\\62,6\\59,1\\56,7\\53,8\\53,2\\50,0\ (\mathbf{Hg}_{2}\mathbf{J}_{2})\\37,1\\20.8\end{array}$	$\begin{array}{c} 239,1\pm 0,9\\ 247,3\pm 1,8\\ 247,9\pm 0,7\\ 261,4\pm 0,3\\ 269,5\pm 0,8\\ 274,4\pm 1,2\\ 281,2\pm 0,9\\ 284,0\pm 0,6\\ 284,8\pm 0,3\\ 283,3\pm 1,9\\ 285,7\pm 1,1\\ 286,3\pm 0,3\\ 287,6\pm 0,5\\ 283,4\pm 0,3\\ \end{array}$	 240,8 \pm 0,7 240,7 \pm 0,3 241,0 \pm 0,4 240,2 \pm 1,8 242,5 \pm 1,1 242,4 \pm 0,4 241,4 \pm 1,5 242,6 \pm 0,8 242,0 \pm 0,4 242,1 \pm 0,7 241,5 \pm 0,5	$\begin{array}{c} 231,2 \pm 0,1 \\ 231,4 \pm 0,1 \\ 231,9 \pm 0,5 \\ 231,8 \pm 0,2 \\ 231,6 \pm 0,2 \\ 231,3 \pm 0,2 \\ 231,2 \pm 0,6 \\ \hline \\ 231,5 \pm 0,7 \\ 231,3 \pm 0,3 \\ \hline \\ 231,3 \pm 0,3 \\ \hline \\ 231,8 \pm 0,2 \\ \hline \\ \end{array}$					
$\begin{array}{c} 77,7\\75,2\\72,3\\68,6\\62,6\\59,1\\56,7\\53,8\\53,2\\50,0\\(\mathbf{Hg}_{2}\mathbf{J}_{2})\\37,1\\20,8\\1.1\end{array}$	$\begin{array}{c} 239,1\pm 0,9\\ 247,3\pm 1,8\\ 247,9\pm 0,7\\ 261,4\pm 0,3\\ 269,5\pm 0,8\\ 274,4\pm 1,2\\ 281,2\pm 0,9\\ 284,0\pm 0,6\\ 284,8\pm 0,3\\ 283,3\pm 1,9\\ 285,7\pm 1,1\\ 286,3\pm 0,3\\ 287,6\pm 0,5\\ 283,4\pm 0,3\\ 287,6\pm 0,7\\ \end{array}$	$\begin{array}{c}\\ 240,8 \pm 0,7\\ 240,7 \pm 0,3\\ 241,0 \pm 0,4\\ 240,2 \pm 1,8\\ 242,5 \pm 1,1\\ 242,4 \pm 0,4\\ 241,4 \pm 1,5\\ 242,6 \pm 0,8\\ 242,0 \pm 0,4\\ 242,1 \pm 0,7\\ 241,5 \pm 0,5\\ \end{array}$	$231,2 \pm 0,1$ $231,4 \pm 0,1$ $231,9 \pm 0,5$ $231,8 \pm 0,2$ $231,6 \pm 0,2$ $231,3 \pm 0,2$ $231,2 \pm 0,6$ 					

Tabelle 1. System J_2 —HgJ₂

änderungen auf. Um diese Vorgänge genauer zu verfolgen, wurden kleine Probenmengen in evakuierten Kapseln im Trockenschrank durchgeschmolzen, fein gepulvert und zwischen zwei Objektträger luftdicht verklebt im Kofler-Schmelzpunktsapparat untersucht. Versuche, die Liquiduspunkte zwischen dem Schmelzpunkt des J2 und dem Eutektikum festzustellen, scheiterten an der dunkelvioletten Farbe der Schmelze, die eine Bestimmung des Kristallisationsbeginns nicht zuließ. Für die eutektische Temperatur wurden die Werte 101,0°, 101,2° und 101,1°C erhalten, die gut mit den thermoanalytischen Ergebnissen übereinstimmen. Bei schnellem Erhitzen von rotem tetraedrischen HgJ2 treten die ersten gelben Kristalle bei 140° C auf und erst bei $\sim 170^{\circ}$ C ist die Phasenumwandlung abgeschlossen. Synchron mit der Farbänderung ist die Umwandlung der Kristallstruktur von tetragonal in rhombisch erkennbar. Mit steigender Temperatur vertieft sich der gelbe Farbton, es bilden sich große, intensiv orangerote Platten von langgestreckter, rechteckiger Form, die bei 256° C zu einer dunkelroten, fast schwarzen, undurchsichtigen Flüssigkeit schmelzen. Bei Mischungen mit mehr als 40 Mol% HgJ₂ treten die gleichen Farbänderungen wie bei HgJ₂ auf. Beim Schmelzen bilden sich dunkle Kugeln, deren Zentren hellere Blautöne zeigen als die Außenschalen. Proben zwischen J₂ und HgJ₂ bilden dunkle, undurchsichtige Schmelzen, aus denen sich beim Abkühlen dunkle, metallisch glänzende Kristalle ausscheiden. Im festen Zustand ändert sich die Farbe von dunkelviolett-metallisch (J_2) bis rot (HgJ_2) . Nach längerem Stehen entmischt sich das Eutektikum wegen der leichten Sublimierbarkeit von J_2 in feines, rotes Pulver (HgJ₂) und große J₂-Kristalle.

HgJ_2 —Hg

Das System HgJ₂—Hg ist im Aufbau dem System HgBr₂—Hg¹ sehr ähnlich, wie Abb. 2 zeigt. Mittelwerte der Haltepunkte mit den Standardabweichungen sind in Tab. 2 angeführt. Das zwischen HgJ₂ und Hg₂J₂ auftretende Eutektikum liegt bei 82,7 Mol% HgJ₂ und schmilzt bei 231,4 \pm 0,1° C (Mittelwert aus 48 Messungen), in Übereinstimmung mit den Resultaten von *Grantham*⁶ (81,3 bis 82,6 Mol% HgJ₂ und 230 bis 235° C). Obwohl *Pelabon* und *Laude*⁵ den Schmp. von HgJ₂ in guter Übereinstimmung mit uns bei 256° C fanden, weichen ihre Werte für das Eutektikum von 76,3 Mol% HgJ₂ und 227° C merklich von unseren ab. Die Resultate von *Grantham*⁶ (\triangle) und *Pelabon* und *Laude*⁵ (——) sind ebenfalls in Abb. 2 eingezeichnet. Aus der Neigung der Liquiduskurve ergibt sich für die Löslichkeit von Hg₂J₂ in HgJ₂ eine kryoskopische Konstante $K_f = 49,5$, die sich von den in der Literatur angegebenen Werten $K_f = 54,2$ bzw. 55,0¹¹ und $K_f = 54,0^4$ für eine

¹¹ M. Guinchant, C. r. hebdomad. Sé. Acad. Sci. 145, 68 (1907).

Lösung von 3,2 Mol% Hg₂J₂ in HgJ₂ nur durch eine Temperaturdifferenz von $0,3^{\circ}$ C unterscheidet.

 $\mathrm{Hg}_2 J_2$ schmilzt inkongruent bei 241,5 \pm 0,5° C (Mittelwert aus 39 Messungen) und disproportioniert sich dabei in eine HgJ₂-reiche Schmelze mit ungefähr 79,0 Mol% HgJ₂ und in eine Hg-reiche Schmelze

Abb. 2. System HgJ₂—Hg

mit $< 0.5 \text{ Mol}_{0}^{\circ} \text{ HgJ}_{2}$. Die Mischungslücke schließt sich bei ungefähr 288° C, doch ist zwischen 60 und 20 Mol_{0}^{\circ} HgJ_{2} die kritische Entmischungskurve praktisch horizontal. Oberhalb dieser kritischen Temperatur herrscht über den gesamten Konzentrationsbereich von J₂ bis Hg vollkommene Mischbarkeit. *Yvon*¹² berichtete, daß Hg₂J₂ bei 290° C schmilzt, jedoch schon bei 220° C erweicht. *François*¹³ konnte wegen der bei 292° C eintretenden Zersetzung den Schmp. von Hg₂J₂ nicht exakt bestimmen.

Stroman¹⁴ fand für den Schmp. (unter Zers.) einen Wert von 290° C. Diese Angaben decken sich mit der eigenen Beobachtung, daß beim

¹² P. Yvon, C. r. hebdomad. Sé. Acad. Sci. 76, 1607 (1873).

¹³ M. François, C. r. hebdomad. Sé. Acad. Sci. **122**, 190 (1896).

¹⁴ A. Stroman, Ber. dtsch. chem. Ges. 20, 2820 (1887).

erstmaligen Aufheizen einer Probe von Hg_2J_2 ein deutlicher Haltepunkt bei 296,0° C festgestellt werden konnte, der dem metastabilen kongruenten Schmp. von Hg_2J_2 entsprechen dürfte. Beim Abkühlen und nochmaligen Aufheizen erhält man die in Tab. 2 angegebenen Haltepunkte, die sich bei weiterer thermischer Behandlung nicht mehr ändern. Da die syntektische Reaktion wegen der Entmischung der Flüssigkeiten bei den vorgegebenen Abkühlungsgeschwindigkeiten nicht vollständig abläuft, wurde auch bei einer Probe der Zusammensetzung Hg_2J_2 ein eutektischer Haltepunkt erhalten, außerdem konnte nach dem Abkühlen in der Probe feinverteiltes Hg beobachtet werden.

Pelabon und Laude⁵ untersuchten das System HgJ₂—Hg wegen der bei 292° C auftretenden Zersetzung¹³ nur bis 64,9 Mol% HgJ₂. In Übereinstimmung damit steht die eigene Beobachtung, daß in abgekühlten Proben mit weniger als 68,5 Mol% HgJ₂ bereits freies Hg auftritt.

Die Zusammensetzung des dem nicht varianten Gleichgewicht zwischen Hg_2J_2 und Hg entsprechenden Punktes liegt praktisch bei reinem Hg. Mit zunehmender Temperatur steigt die Löslichkeit von Hg_2J_2 in Hg nur geringfügig an und erreicht bei 265° C erst 0,5 Mol% HgJ₂.

Beim erstmaligen Erhitzen von Hg₂J₂ im Kofler-Schmelzpunktsapparat ändert sich bei 250° C der gelbliche Farbton über Gelborange nach Rot. Bei 295° C schmilzt Hg₂J₂ unter Schwarzfärbung und unter Bildung von Hg-Tröpfchen. Die von Bachmann und Maginnis¹⁵ beschriebene reversible Farbänderung von Gelb nach Rot zwischen 54° und 82° C konnte nicht festgestellt werden. Proben zwischen HgJ₂ und Hg bilden dunkle, undurchsichtige Schmelzen. Im Bereich der HgJ₂-Liquiduskurve scheiden sich primär leuchtend rote, daneben auch gelbe und orangerote Kristalle ab. Beim Erhitzen von Proben mit weniger als 70 Mol% HgJ₂ ändert sich die Farbe von Rot nach Metallisch-schwarz, wobei sich Hg tropfenförmig aus der nun bimssteinartigen Festsubstanz ausscheidet. Nach längerem Konstanthalten der Temperatur bilden sich zwei nichtmischbare Flüssigkeiten, und zwar flüssiges Hg und eine darüberstehende dunkle Schmelze. Bei weiterer Temperaturerhöhung auf $\sim 300^{\circ}$ C verschwindet die Hg-Phase und es tritt eine vollständig homogene Schmelze auf. Bis 430° C verändert sich die Schmelze optisch nicht weiter, der Gasraum ist jedoch von einem gelblich-grünen Dampf erfüllt. Beim Abkühlen bilden sich aus der homogenen Phase zwei Flüssigkeiten, der metallische Hg-Spiegel überzieht sich mit einer schwarzen Schicht, es setzt eine heftige Reaktion mit anfänglicher Blasenbildung und späteren eruptionsartigen Erscheinungen ein, aus der in den oberen Teil der Kapsel geschleuderten Substanz bilden sich rote Kristalle, die sich dann auch an der Gefäßwand abscheiden, und schließlich erstarrt die restliche Schmelze.

¹⁵ C. H. Bachmann und J. B. Maginnis, Amer. J. Physics 19, 424 (1951).

992 Rosemarie Dworsky und K. L. Komarek: [Mh. Chem., Bd. 101

Feste Proben zwischen HgJ_2 und Hg_2J_2 sind rot bis gelb und orange und ab 67 Mol% HgJ_2 konnten Tropfen (freies Hg) festgestellt werden. In Proben zwischen Hg_2J_2 und Hg tritt das flüssige Hg klar in Erscheinung. Hg-reiche Proben mit nur wenig Hg_2J_2 erscheinen fest, da Glaswände und Oberfläche mit transparenten orangen, roten und vereinzelt auch gelben Kristallen überzogen sind, durch die das Hg metallisch durchschimmert.

Diskussion

Beckmann² wies durch kryoskopische Messungen nach, daß HgJ₂ in flüssigem J₂ nicht assoziiert vorliegt und daß die Lösungen den Strom sehr schlecht leiten, daß sich also HgJ₂ in molekularer Form löst. Die Liquiduskurven im System J₂-HgJ₂ (Abb. 1) wurden deshalb unter der Annahme berechnet, dåß in Lösung nur J2- und HgJ2-Moleküle vorliegen und daß sie eine ideale Lösung bilden. Zur Berechnung der J2-Liquiduskurve wurde die Raoult-van't Hoffsche Gleichung herangezogen und für die Schmelzenthalpie von J₂ ein konstanter Wert von $\Delta H_f^{\circ} =$ = 3.71 kcal/Mol¹⁶ eingesetzt. Innerhalb der Fehlergrenzen ergibt sich vollkommene Übereinstimmung zwischen den experimentellen und berechneten Werten, so daß nicht nur die Zahl der Teilchen gleich der Zahl der gelösten HgJ₂-Moleküle ist, sondern die Lösung sich in bezug auf das Lösungsmittel J₂ zwischen 100 Mol% und 85 Mol% J₂ ideal verhält. Die HgJ2-Liquiduskurve im System J2-HgJ2 wurde für eine temperaturabhängige Schmelzenthalpie und eine ideale Lösung nach folgender Gleichung berechnet.

$$\log X_{\mathrm{HgJ}_2} = -\frac{(\Delta H^{\circ}_{(Tf)} - \Delta c_p T_f)}{4,575} \frac{T_f - T}{T_f \cdot T} + \frac{\Delta c_p}{R} \log \frac{(T)}{(T_f)},$$

wobei für $\Delta H_{(Tf)}^{\circ} = 4530$ kcal/Mol¹⁶ und für $\Delta c_p = 4,80$ cal/Mol[.] Grd¹⁷ eingesetzt wurden. Für geringe Zugaben von J₂ zu HgJ₂ liegen die gemessenen Werte etwas unterhalb der theoret. Kurve (in Abb. 1 strichliert gezeichnet), so daß sich für die Probe mit 96,4 Mol% HgJ₂ eine kryoskopische Zahl von 1,20 und für 91,6 Mol% HgJ₂ 1,14 berechnet. Daraus kann geschlossen werden, daß jedes zugesetzte Molekül J₂ ein kryoskopisch wirksames Teilchen erzeugt, daß aber das Lösungsmittel HgJ₂ geringe Abweichungen vom idealen Verhalten zeigt. Daß diese Abweichungen im gesamten System J₂—HgJ₂ nur gering sind, zeigt der weitere Verlauf der berechneten Liquiduskurve; die Temperaturunterschiede zwischen theoretischen und experimentellen Werten

¹⁶ D. R. Stull, JANAF Thermochemical Tables, The Dow Chemical Company, Midland, Mich., Sept. 1961.

¹⁷ O. Kubaschewski und E. L. Evans, "Metallurg. Thermochem." 3rd ed., Pergamon Press, London, 1958.

betragen praktisch im ganzen System nicht mehr als 2° C. Das System J_2 —Hg J_2 besteht im flüssigen Zustand also aus den beiden Molekülarten J_2 und Hg J_2 , die eine Lösung mit nur geringen Abweichungen vom idealen Verhalten bilden.

Im System HgJ2-Hg wurde die HgJ2-Liquiduskurve für zwei Modelle berechnet. Im ersten Fall wurde angenommen, daß sich Hg in atomarer Form löst. Die Liquiduskurve wurde mit dem Molenbruch $x_{\mathrm{HgJ}_{2}} = [\mathrm{HgJ}_{2}]_{0}/([\mathrm{HgJ}_{2}]_{0} + [\mathrm{Hg}]_{0})$ berechnet, wobei mit $[\mathrm{HgJ}_{2}]_{0}$ und [Hg]₀ die Zahl der ursprünglich sich in der Probe befindlichen Mole bezeichnet werden. Die theoret. Kurve (punktiert in Abb. 2) stimmt mit den exper. Werten ($-\circ-$) bis zu einer Konzentration von 10 Mol% Hg überein; dann weichen die exper. Werte im zunehmenden Maße nach niedrigeren Temperaturen ab und die kryoskopische Zahl wird größer als Eins bzw. die Lösung weicht vom idealen Verhalten ab. Im zweiten Fall wurde angenommen, daß sich zugesetztes Hg mit HgJ₂ zu Hg₂J₂-Molekülen umsetzt. Die Liquiduskurve wurde daher mit dem Molen $x_{\mathrm{HgJ}_2} = ([\mathrm{HgJ}_2]_0 - [\mathrm{Hg}]_0) / [\mathrm{HgJ}_2]_0$ berechnet. Bis ungefähr bruch 5 Mol% Hg herrscht wieder vollkommene Übereinstimmung zwischen der theoret. Kurve (strichpunktiert in Abb. 2) und den exper. Werten, dann weicht die theoret. Kurve nach niedrigeren Temperaturen ab. doch bleiben die Abweichungen von ungefähr 10 Mol% Hg an konstant. In beiden Fällen weist die kryoskopische Zahl auf einen Lösungsmechanismus hin, bei dem eine Partikel für jedes Molekül gelösten Stoffes gebildet wird, das heißt, daß bei Zusatz von Hg zu HgJ₂ entweder Hg-Atome in Lösung gehen oder sich ein Hg₂J₂-Molekül bildet bzw. daß bei Zusatz von Hg₂J₂ zu HgJ₂ durch Disproportionierung Hg-Atome gebildet werden oder Hg₂J₂ in Lösung geht. Kryoskopisch kann aber zwischen diesen beiden Möglichkeiten nicht unterschieden werden, doch interpretierte Grantham⁶ den Anstieg der elektrischen Leitfähigkeit bei Zusatz von Hg₂J₂ zu HgJ₂-Schmelzen dahingehend, daß sich ein leitendes Salz (Hg₂J₂) in einem nichtleitenden Lösungsmittel (HgJ₂) löst, daß es sich also bei der in HgJ₂ gelösten Species um Hg₂J₂ und nicht um Hg handelt.

In Abb. 3 sind die drei Systeme $HgCl_2-Hg^7$, $HgBr_2-Hg^1$ und HgJ_2-Hg zusammengefaßt, um einen Überblick über die Ähnlichkeiten und die Unterschiede zu gewinnen. In allen drei Systemen finden wir kongruent schmelzende Verbindungen HgX_2 , inkongruent schmelzende Verbindungen HgX_2 , die syntektisch aus zwei nichtmischbaren Flüssigkeiten gebildet werden, Mischungslücken im flüssigen Aggregatszustand und Eutektika zwischen HgX_2 und Hg_2X_2 . Mit steigender Ordnungszahl nähern sich die flüssigen Schmelzen dem idealen Verhalten und die syntektischen und die kritischen Temperaturen nehmen ab. Die syntektische Linie verkürzt sich vom Jodid- zum Chlorid-System und die

Zusammensetzung der salzreichen syntektischen Schmelze verschiebt sich nach der Zusammensetzung Hg_2X_2 hin. Dadurch nähert sich die syntektische Temperatur dem extrapolierten metastabilen kongruenten Schmelzpunkt von Hg_2X_2 (Tab. 3) und Hg_2F_2 schmilzt bereits stabil kongruent¹⁸. Zwischen den Bildungsenthalpien der Hg_2X_2 -Verbindungen

Abb. 3. System HgX_2 —Hg

und ihren Schmelzpunkten besteht eine Beziehung; beide Werte nehmen mit abnehmender Ordnungszahl zu (Tab. 3). Die Mischungslücken sind asymmetrisch und gegen die Metallseite verschoben; die Löslichkeit des Salzes in der Metallschmelze ist wesentlich geringer als die Löslichkeit des Metalls in der Salzschmelze. Vom Chlorid- zum Jodid-System nimmt die Löslichkeit in der Salzschmelze zu, die Löslichkeit in der Metallschmelze ab. Auffällig ist die sehr breite Mischungslücke im System HgJ₂—Hg und die niedrige kritische Temperatur.

Alle Hg₂X₂-Verbindungen sind bei Zimmertemp. gegen Disproportionierung gemäß Hg₂X_{2(S)} = HgX_{2(S)} = Hg(L) stabil, wie aus den

¹⁸ O. Ruff und G. Bahlau, Ber. dtsch. chem. Ges. 51, 1752 (1918).

freien Reaktionsenthalpien (Tab. 3) ersichtlich ist, doch werden die Werte mit zunehmender Temp. kleiner und somit die Stabilität geringer. Bei der syntektischen Temp. disproportionieren sich Hg₂Cl₂, Hg₂Br₂ und Hg₂J₂ in eine Hg X_2 -reiche und eine Hg-reiche Schmelze gemäß

$$\mathrm{Hg}_{2}X_{2(S)} := \mathrm{Hg}X_{2(Schmelze)} + \mathrm{Hg}_{(Schmelze)} K = \frac{a_{\mathrm{Hg}X_{2}} \cdot a_{\mathrm{Hg}}}{a_{\mathrm{Hg}_{2}X_{2}}}$$

Wenn wir als Annäherung die Aktivitäten durch die Molenbrüche ersetzen und die entsprechenden Werte der Tab. 3 entnehmen, erhalten wir bei den syntektischen Temperaturen gemäß $\Delta G^{\circ} = -RT \ln K$ für die Freie Enthalpie folgende Werte (in kcal/Mol):

$$+$$
 1,13 für Hg₂Cl₂, $+$ 0,89 für Hg₂Br₂, $+$ 0,24 für Hg₂J₂.

Da in diesen Systemen, wegen der zu erwartenden positiven Abweichung vom idealen Verhalten, die Aktivitäten größer sein werden als die Molenbrüche, werden die wahren Enthalpiewerte zwischen obigen Zahlen und Null liegen. Die so berechneten Werte stimmen innerhalb der Fehlergrenzen mit den teilweise durch thermodynamische Messungen, teilweise durch Abschätzungen erhaltenen Literaturwerten für die Reaktion $Hg_2X_{2(S)} \rightleftharpoons HgX_{2(L)} + Hg_{(L)}$ bei der syntektischen Temp. überein (Tab. 3). Der Wert für Hg_2F_2 gilt für festes HgF_2 beim Schmp. von Hg_2F_2 . Hg_2F_2 ist also als einzige HgX_2 -Verbindung bei dieser Temp. gegen Disproportionierung stabil.

Tabelle	3.	Einige	${f thermodynamische}$	Eigenschaften	deı				
Hg_2X_2 -Verbindungen									

	$\mathrm{Hg_{2}F_{2}}$	$\mathrm{Hg_{2}Cl_{2}}$	$\mathrm{Hg_{2}Br_{2}}$	$\mathrm{Hg}_{2}\mathrm{J}_{2}$
Bildungsenthalpie				
$(\Delta H_{298}^{\circ}, { m keal}/{ m Mol})$	117,68	63 17	- 49,417	- 28,817
Syntektische Temperatur (°C)		525^{7}	$454,2^{1}$	241,5
Kongruenter Schmelzpunkt (°C)	57018	529	470	296
${ m Syntektische Salzschmelze} \ ({ m Mol}\% \ { m Hg}X_2)$		527	58 ¹	79
${f Syntektische Metallschmelze}\ (Mol\% HgX_2)$		67	71	< 0,5
Freie Disproportionierungs- enthalpie (ΔG_{298}° , kcal/Mol) ¹⁶	12,74	6,33	6,34	2,12
Freie Disproportionierungs- enthalpie				
$(\Delta G^{\circ}_{ m synt. Temp.}, m kcal/Mol)^{16}$	8,33	0,70	1,75	1,21
				64*

996 Rosemarie Dworsky u. a.: Quecksilber-Halogensysteme

In den letzten zehn Jahren wurden besonders die Alkalimetall-Alkalihalogenid-, die Wismut-Wismuthalogenid- und die Seltenerdmetall-Seltenerdmetallhalogenid-Systeme untersucht¹⁹. Ganz allgemein kann festgestellt werden, daß mit Ausnahme der Cs-CsX-Systeme und des Rb-RbBr-Systems eine Mischungslücke im flüssigen Zustand an der metallreichen Seite auftritt und daß eine Verschiebung der Symmetrie der Mischungslücke feststellbar ist, und zwar von den Jodidsystemen (mit bevorzugter Mischbarkeit in der Salzphase) zu den Fluoridsystemen (mit bevorzugter Mischbarkeit in der Metallphase). In den Bi-X-Systemen tritt außerdem ein syntektisch sich bildendes (BiCl. BiBr) bzw. inkongruent schmelzendes (BiJ) Subhalogenid auf. In den Metall-Jodsystemen Bi-J2²⁰, K-J2²¹, Rb-J2²¹ und Cs-J2²¹ bewirkt Zusatz von Metall zu Jod eine Gefrierpunktserniedrigung, die Bildung eines jodreichen Eutektikums und weiters einen Anstieg der Liquiduskurve zu den stabilen kongruent schmelzenden jodreichen Salzen (von den inkongruent schmelzenden Polyjodiden des Rb und Cs soll hier abgesehen werden). In allen diesen Systemen herrscht vollkommene Mischbarkeit im flüssigen Zustand. Ein Vergleich zeigt, daß die Hg-X-Systeme dieselben allgemeinen Züge besitzen und daß sie den Bi-X-Systemen im Aufbau am ähnlichsten sind.

¹⁹ M. A. Bredig, "Molten Salt Chemistry" (Herausgeber M. Blander), Interscience, New York, S. 367 (1964).

²⁰ F. E. Rosztoczy und D. Cubicciotti, J. Physic. Chem. 69, 124 (1965).

²¹ F. E. Rosztoczy und D. Cubicciotti, J. Physic. Chem. 69, 1687 (1965).